Note
Click here to download the full example code
RoadsΒΆ
The pygmt.Figure.plot
method allows us to plot geographical data such
as lines which are stored in a geopandas.GeoDataFrame
object. Use
geopandas.read_file
to load data from any supported OGR format such as
a shapefile (.shp), GeoJSON (.geojson), geopackage (.gpkg), etc. Then, pass the
geopandas.GeoDataFrame
as an argument to the data
parameter in
pygmt.Figure.plot
, and style the geometry using the pen
parameter.
Out:
<IPython.core.display.Image object>
import geopandas as gpd
import pygmt
# Read shapefile data using geopandas
gdf = gpd.read_file(
"http://www2.census.gov/geo/tiger/TIGER2015/PRISECROADS/tl_2015_15_prisecroads.zip"
)
# The dataset contains different road types listed in the RTTYP column,
# here we select the following ones to plot:
roads_common = gdf[gdf.RTTYP == "M"] # Common name roads
roads_state = gdf[gdf.RTTYP == "S"] # State recognized roads
roads_interstate = gdf[gdf.RTTYP == "I"] # Interstate roads
fig = pygmt.Figure()
# Define target region around O'ahu (Hawai'i)
region = [-158.3, -157.6, 21.2, 21.75] # xmin, xmax, ymin, ymax
title = r"Main roads of O\047ahu (Hawai\047i)" # \047 is octal code for '
fig.basemap(region=region, projection="M12c", frame=["af", f'WSne+t"{title}"'])
fig.coast(land="gray", water="dodgerblue4", shorelines="1p,black")
# Plot the individual road types with different pen settings and assign labels
# which are displayed in the legend
fig.plot(data=roads_common, pen="5p,dodgerblue", label="CommonName")
fig.plot(data=roads_state, pen="2p,gold", label="StateRecognized")
fig.plot(data=roads_interstate, pen="2p,red", label="Interstate")
# Add legend
fig.legend()
fig.show()
Total running time of the script: ( 0 minutes 3.900 seconds)